Absence of Continuous Symmetry Breaking in a One-Dimensional \boldsymbol{n}^{-2} Model

Barry Simon ${ }^{1,2}$

Received January 19, 1981

Abstract

For a one-dimensional array of S^{N-1} spins ($N \geqslant 2$) with isotropic pair interactions (and more general systems) with $J(j-i)$ obeying $\left.\sup _{n}\left[n^{-1} \sum_{1}^{n} j^{2} \mid J(j)\right]\right]$ $<\infty$, we prove that every equilibrium state is invariant under the natural action of $S O(N)$. In particular, there is no long-range order of the conventional type. Included is the case $J(n)=n^{-2}$.

KEY WORDS: Continuous symmetry; one-dimensional model; n^{-2} model.

There has been considerable interest in long-range one-dimensional lattice gases, in part because of formal connections with the Kondo problem, and in part because of an analogy with higher-dimensional models: continuous variation of rate of falloff is somewhat akin to continuous variation of dimension.

For pair-interacting ferromagnetic models with coupling $J(j)=j^{-\alpha}$, it has been known for some time that $\alpha=2$ is the borderline. Ruelle ${ }^{(7)}$ showed if $\alpha>2$, neither the Ising or multicomponent models have multiple phases; if $\alpha<2$, then Dyson ${ }^{(1)}$ proved that the Ising model has multiple phases and Frohlich et al. ${ }^{(3)}$ proved the same thing for the multicomponent models.

Naturally, interest has focused on the borderline case $\alpha=2$. Recently, Frohlich and Spencer ${ }^{(4)}$ proved the existence of discrete symmetry breaking for the Ising model with this value of α. Our main goal here is to prove the absence of continuous symmetry breaking in models of the same type.

[^0]For falloff near n^{-2}, Ruelle's method shows no symmetry breaking for

$$
\begin{equation*}
J(j) \leqq j^{-2}\left(\log _{j} j\right)^{-\alpha}\left(\log _{2} j\right)^{-\beta} \tag{1}
\end{equation*}
$$

if $\alpha>1$ or if $\alpha=1, \beta>1$; Dyson ${ }^{(2)}$ allows $\alpha=1, \beta>0$, and recent results of Rogers and Thompson ${ }^{(6)}$ allow $\alpha>0$ or $\alpha=0, \beta>1$.

The condition we will need is

$$
\begin{equation*}
\sup _{n}\left[n^{-1} \sum_{1}^{n} j^{2}|J(j)|\right]<\infty \tag{2}
\end{equation*}
$$

For J 's obeying (1), our condition is strictly weaker than those in Refs. 2 or 6 , but as we show in an appendix, there are J 's which fail to obey (2) but which obey the condition of Ref. 6:

$$
\sum_{1}^{n} j|J(j)|=o\left(\log n / \log _{2} n\right)
$$

We do emphasize that since Refs. 2 and 6 use correlation inequalities, there are restrictions on the model which we don't need.

The proof is embarrassingly simple; indeed it should be viewed as a postscript on two recent proofs of the absence of continuous symmetry in two dimensions which allow long-range interactions in that dimension. ${ }^{(5,8)}$ We will use Pfister's method here because it is technically somewhat simpler but we emphasize that the Simon-Sokal method would prove our theorems also; indeed their method proves that if $\sum_{i}^{n} j|J(j)|=O\left(n(\log n)^{\alpha}\right)$ with $\alpha<1$, then finite susceptibility would imply no continuous symmetry breaking. This suggests that the borderline for continuous symmetry breaking is $n^{-2}(\log n)$ and that at that point there might be a Thouless effect (discontinuous magnetization); we recall that it is known ${ }^{(3)}$ that there is continuous symmetry breaking for $n^{-2}(\log n)^{\beta}$ if $\beta>1$.

Lemma 1. Let J obey (2) and let $\theta(j)$ be the function which is 1 for $j=1, \ldots, n ; 0$ for $j \geqslant 2 n$ or $j \leqslant-n+1$ and which obeys $\theta(j)=2$ (j / n) if $n \leqslant j \leqslant 2 n ; \theta(j)=1+[(-1+j) / n]$ if $-n+1 \leqslant j \leqslant 0$ (i.e., middle region of width n and two linear falloff regions of size n). Then

$$
\begin{equation*}
\sum_{i \neq j}|J(i-j)|[\theta(i)-\theta(j)]^{2} \tag{3}
\end{equation*}
$$

is bounded independently of n.
Proof. Call the region where $\theta=1$ region I, the region where $\theta=0$ region II, and the intermediate region, region III. As a preliminary, we note that in the Appendix we show that (2) implies (indeed is equivalent to)

$$
\begin{equation*}
\sup _{n}\left[n \sum_{n}^{\infty}|J(j)|\right]<\infty \tag{4}
\end{equation*}
$$

The contribution to (3) from $i \in \mathrm{I}, j \in \mathrm{II}$ is bounded by a multiple of

$$
n \sum_{k=n}^{\infty}|J(k)|
$$

the n coming from the number of i values and the $k>n$ from the distance between regions I and II. The interaction between regions I and III is bounded by a multiple of

$$
\sum_{i=1}^{n}\left(\frac{i}{n}\right)^{2} \sum_{k=i}^{\infty}|J(k)| \leqslant n \sum_{n}^{\infty}|J(k)|+n^{-1} \sum_{1}^{n} k^{2}|J(k)|
$$

and a similar bound on the II-III interaction. Thus (2) and (4) show (3) is bounded.

Theorem 1. Consider a model with spins σ_{i} in S^{1} and pair interactions $J(i-j)$ obeying (2). Then every equilibrium state is invariant under the action of $S O(2)$.

Proof. Given any angle ϕ_{0}, any configuration σ and any n, we can form two configurations σ^{\prime} and $\sigma^{\prime \prime}$ by rotating spin i by angle $\theta(i) \phi_{0}$ and $\theta(i)\left(2 \pi-\dot{\phi}_{0}\right)$, respectively (θ as in the lemma). The lemma controls the second-order energy shift so since the first-order shifts have opposite signs either

$$
-H\left(\sigma^{\prime}\right) \leqslant H(\sigma)+c
$$

or

$$
-H\left(\sigma^{\prime \prime}\right) \leqslant H(\sigma)+c
$$

with c independent of n and σ. From this one concludes the result as in Pfister's paper. ${ }^{(5)}$

By the same argument, one proves the following result.
Theorem 2. Consider a one-dimensional lattice gas with spins $s_{i} \in \Omega$ some compact space. Let G be a compact connected Lie group which acts on Ω by $(g, s) \rightarrow \tau_{g} s$. Suppose that for each finite volume Λ and each assignment, t, of spins external to Λ, we have
(a) $H_{\wedge}\left(\tau_{g} s \mid \tau_{g} t\right)=H_{\wedge}(s \mid t) \quad$ (same g at all sites)
(b) The map $\left\{g_{i}\right\}_{i \in \Lambda} \mapsto H_{\wedge}\left(t_{\tau g_{i}} s \mid t\right)$ is C^{2} for each s and t
(c) $J(i) \equiv \sup _{\wedge, t, s}\left|\partial^{2} H_{\wedge}\left(\tau_{g_{i}} s \mid t\right) / \partial g_{i} \partial g_{0}\right|$
obeys (2). Then every equilibrium state is G invariant.

ACKNOWLEDGMENTS

It is a pleasure to thank A. Klein and D. Shucker for a very stimulating conversation.

APPENDIX. CONDITIONS ON $J(j)$

Theorem A.1. Let $J(j), j=1,2, \ldots$ be given. Then the two conditions
(a)

$$
\begin{aligned}
& \sup _{n}\left[n \sum_{n}^{\infty}|J(j)|\right]=a<\infty \\
& \sup _{n}\left[n^{-1} \sum_{1}^{n} j^{2}|J(j)|\right]=b<\infty
\end{aligned}
$$

(b)
are equivalent.
Proof. Let

$$
c(n)=2^{n^{n+1}} \sum_{2^{n}}^{2^{n}-1}|J(j)|
$$

We will prove (a) and (b) are each equivalent to

$$
\begin{equation*}
\sup _{n} c(n)=c<\infty \tag{c}
\end{equation*}
$$

Clearly $c(n) \leqslant a$ and $c(n) \leqslant 2 b$ so (a) or (b) implies (c). Conversely, if $2^{n} \leqslant k \leqslant 2^{n+1}$, then

$$
k \sum_{k}^{\infty}|J(j)| \leqslant 2\left[2^{n} \sum_{2^{n}}^{\infty}|J(j)|\right] \leqslant 2\left[c(n)+\frac{1}{2} c(n+1)+\cdots\right] \leqslant 4 c
$$

and

$$
\begin{aligned}
k^{-1} \sum_{1}^{k} j^{2}|J(j)| & \leqslant 2^{-n} \sum_{1}^{2^{n+1}-1} j^{2}|J(j)| \\
& \leqslant 2^{-n} \sum_{l=1}^{n}\left[\sum_{2^{l}}^{2^{l+1}-1} j^{2}|J(j)|^{2}\right] \\
& \leqslant 4 \sum_{l=1}^{n} 2^{-n+l} c(l) \leqslant 8 c
\end{aligned}
$$

so (c) implies (a) or (b).
Remark. In Ref. 6, Rogers and Thompson consider the condition

$$
\sum_{1}^{n} j|J(j)|=o\left(\left[\log n / \log _{2} n\right]\right)
$$

This is as above seen to be equivalent to

$$
\begin{equation*}
\sum_{1}^{n} c(n)=o(n / \log n) \tag{A.1}
\end{equation*}
$$

If c is not too misbehaved, this is stronger than c bounded but there are $J(j)$'s, e.g., with $c(n)=k$ if $n=2^{k}$ and zero otherwise with (A.l) holding but c unbounded. Thus our condition is not strictly weaker than in Ref. 6.

REFERENCES

1. F. J. Dyson, Commun. Math. Phys. 12:212 (1969).
2. F. J. Dyson, Commun. Math. Phys. 21:269 (1971).
3. J. Frohlich, R. Israel, E. Lieb, and B. Simon, Commun. Math. Phys. 62:1 (1978).
4. J. Frohlich and T. Spencer, Bures preprint.
5. C. Pfister, Ecole Polytechnique Fédérale, preprint.
6. J. Rogers and C. Thompson, J. Stat. Phys., 25:669.
7. D. Ruelle, Commun. Math. Phys. 9:267 (1968).
8. B. Simon and A. Sokal, J. Stat. Phys., 25:679.

[^0]: Research partially supported by U.S.N.S.F. Grant No. MCS-78-01885.
 ${ }^{1}$ Department of Mathematics, California Institute of Technology, Pasadena, California 91125.
 ${ }^{2}$ S. Fairchild Scholar at Caltech. On leave from Departments of Mathematics and Physics, Princeton University, Princeton, New Jersey 08544.

